153 research outputs found

    Inhibitors of Pyruvate Carboxylase

    Get PDF
    This review aims to discuss the varied types of inhibitors of biotin-dependent carboxylases, with an emphasis on the inhibitors of pyruvate carboxylase. Some of these inhibitors are physiologically relevant, in that they provide ways of regulating the cellular activities of the enzymes e.g. aspartate and prohibitin inhibition of pyruvate carboxylase. Most of the inhibitors that will be discussed have been used to probe various aspects of the structure and function of these enzymes. They target particular parts of the structure e.g. avidin – biotin, FTP – ATP binding site, oxamate – pyruvate binding site, phosphonoacetate – binding site of the putative carboxyphosphate intermediate

    Avidin as a probe of the conformational changes induced in pyruvate carboxylase by acetyl-CoA and pyruvate

    Get PDF
    AbstractSheep liver pyruvate carboxylase was mixed with avidin at a molar ratio of 1:1 in the presence of various combinations of the components of the assay systems required for either the acetyl-CoA-dependent or the acetyl-CoA-independent activity and negatively stained samples were examined by electron microscopy. Significant numbers of chain-like polymers of enzyme-avidin complexes were evident only when acetyl-CoA or high levels of pyruvate were present in the media. Similar results were also obtained for chicken liver pyruvate carboxylase despite this enzyme's almost complete lack of acetyl-CoA-independent activity. Thus, although acetyl-CoA and high concentrations of pyruvate may induce pyruvate carboxylase to adopt a ‘tight’ tetrahedron-like conformation which can interact with avidin to form chains, this structural change alone does not result in an enzymic form that is maximally active. This suggests that the allosteric activation of pyruvate carboxylase by acetyl-CoA is attributable, at least in part to more subtle conformational changes, especially in the case of the chicken enzyme

    Biological Channeling of a Reactive Intermediate in the Bifunctional Enzyme DmpFG

    No full text
    It has been hypothesized that the bifunctional enzyme DmpFG channels its intermediate, acetaldehyde, from one active site to the next using a buried intermolecular channel identified in the crystal structure. This channel appears to switch between an open and a closed conformation depending on whether the coenzyme NAD(+) is present or absent. Here, we applied molecular dynamics and metadynamics to investigate channeling within DmpFG in both the presence and absence of NAD(+). We found that substrate channeling within this enzyme is energetically feasible in the presence of NAD(+) but was less likely in its absence. Tyr-291, a proposed control point at the channel's entry, does not appear to function as a molecular gate. Instead, it is thought to orientate the substrate 4-hydroxy-2-ketovalerate in DmpG before reaction occurs, and may function as a proton shuttle for the DmpG reaction. Three hydrophobic residues at the channel's exit appear to have an important role in controlling the entry of acetaldehyde into the DmpF active site

    Insight into the Carboxyl Transferase Domain Mechanism of Pyruvate Carboxylase from \u3cem\u3eRhizobium etli\u3c/em\u3e

    Get PDF
    The effects of mutations in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase have been determined for the forward reaction to form oxaloacetate, the reverse reaction to form MgATP, the oxamate-induced decarboxylation of oxaloacetate, the phosphorylation of MgADP by carbamoyl phosphate, and the bicarbonate-dependent ATPase reaction. Additional studies with these mutants examined the effect of pyruvate and oxamate on the reactions of the biotin carboxylase domain. From these mutagenic studies, putative roles for catalytically relevant active site residues were assigned and a more accurate description of the mechanism of the carboxyl transferase domain is presented. The T882A mutant showed no catalytic activity for reactions involving the carboxyl transferase domain but surprisingly showed 7- and 3.5-fold increases in activity, as compared to that of the wild-type enzyme, for the ADP phosphorylation and bicarbonate-dependent ATPase reactions, respectively. Furthermore, the partial inhibition of the T882A-catalyzed BC domain reactions by oxamate and pyruvate further supports the critical role of Thr882 in the proton transfer between biotin and pyruvate in the carboxyl transferase domain. The catalytic mechanism appears to involve the decarboxylation of carboxybiotin and removal of a proton from Thr882 by the resulting biotin enolate with either a concerted or subsequent transfer of a proton from pyruvate to Thr882. The resulting enolpyruvate then reacts with CO2 to form oxaloacetate and complete the reaction

    Biological Channeling of a Reactive Intermediate in the Bifunctional Enzyme DmpFG

    Get PDF
    AbstractIt has been hypothesized that the bifunctional enzyme DmpFG channels its intermediate, acetaldehyde, from one active site to the next using a buried intermolecular channel identified in the crystal structure. This channel appears to switch between an open and a closed conformation depending on whether the coenzyme NAD+ is present or absent. Here, we applied molecular dynamics and metadynamics to investigate channeling within DmpFG in both the presence and absence of NAD+. We found that substrate channeling within this enzyme is energetically feasible in the presence of NAD+ but was less likely in its absence. Tyr-291, a proposed control point at the channel's entry, does not appear to function as a molecular gate. Instead, it is thought to orientate the substrate 4-hydroxy-2-ketovalerate in DmpG before reaction occurs, and may function as a proton shuttle for the DmpG reaction. Three hydrophobic residues at the channel's exit appear to have an important role in controlling the entry of acetaldehyde into the DmpF active site

    Probing the Catalytic Roles of Arg548 and Gln552 in the Carboxyl Transferase Domain of the \u3cem\u3eRhizobium etli\u3c/em\u3e Pyruvate Carboxylase by Site-directed Mutagenesis

    Get PDF
    The roles of Arg548 and Gln552 residues in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase were investigated using site-directed mutagenesis. Mutation of Arg548 to alanine or glutamine resulted in the destabilization of the quaternary structure of the enzyme, suggesting that this residue has a structural role. Mutations R548K, Q552N, and Q552A resulted in a loss of the ability to catalyze pyruvate carboxylation, biotin-dependent decarboxylation of oxaloacetate, and the exchange of protons between pyruvate and water. These mutants retained the ability to catalyze reactions that occur at the active site of the biotin carboxylase domain, i.e., bicarbonate-dependent ATP cleavage and ADP phosphorylation by carbamoyl phosphate. The effects of oxamate on the catalysis in the biotin carboxylase domain by the R548K and Q552N mutants were similar to those on the catalysis of reactions by the wild-type enzyme. However, the presence of oxamate had no effect on the reactions catalyzed by the Q552A mutant. We propose that Arg548 and Gln552 facilitate the binding of pyruvate and the subsequent transfer of protons between pyruvate and biotin in the partial reaction catalyzed in the active site of the carboxyl transferase domain of Rhizobium etli pyruvate carboxylase

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    The Structural Biology Knowledgebase: a portal to protein structures, sequences, functions, and methods

    Get PDF
    The Protein Structure Initiative’s Structural Biology Knowledgebase (SBKB, URL: http://sbkb.org) is an open web resource designed to turn the products of the structural genomics and structural biology efforts into knowledge that can be used by the biological community to understand living systems and disease. Here we will present examples on how to use the SBKB to enable biological research. For example, a protein sequence or Protein Data Bank (PDB) structure ID search will provide a list of related protein structures in the PDB, associated biological descriptions (annotations), homology models, structural genomics protein target status, experimental protocols, and the ability to order available DNA clones from the PSI:Biology-Materials Repository. A text search will find publication and technology reports resulting from the PSI’s high-throughput research efforts. Web tools that aid in research, including a system that accepts protein structure requests from the community, will also be described. Created in collaboration with the Nature Publishing Group, the Structural Biology Knowledgebase monthly update also provides a research library, editorials about new research advances, news, and an events calendar to present a broader view of structural genomics and structural biology

    Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project

    Get PDF
    Purpose: To describe the epidemiology of intra-abdominal infection in an international cohort of ICU patients according to a new system that classifies cases according to setting of infection acquisition (community-acquired, early onset hospital-acquired, and late-onset hospital-acquired), anatomical disruption (absent or present with localized or diffuse peritonitis), and severity of disease expression (infection, sepsis, and septic shock). Methods: We performed a multicenter (n = 309), observational, epidemiological study including adult ICU patients diagnosed with intra-abdominal infection. Risk factors for mortality were assessed by logistic regression analysis. Results: The cohort included 2621 patients. Setting of infection acquisition was community-acquired in 31.6%, early onset hospital-acquired in 25%, and late-onset hospital-acquired in 43.4% of patients. Overall prevalence of antimicrobial resistance was 26.3% and difficult-to-treat resistant Gram-negative bacteria 4.3%, with great variation according to geographic region. No difference in prevalence of antimicrobial resistance was observed according to setting of infection acquisition. Overall mortality was 29.1%. Independent risk factors for mortality included late-onset hospital-acquired infection, diffuse peritonitis, sepsis, septic shock, older age, malnutrition, liver failure, congestive heart failure, antimicrobial resistance (either methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing Gram-negative bacteria, or carbapenem-resistant Gram-negative bacteria) and source control failure evidenced by either the need for surgical revision or persistent inflammation. Conclusion: This multinational, heterogeneous cohort of ICU patients with intra-abdominal infection revealed that setting of infection acquisition, anatomical disruption, and severity of disease expression are disease-specific phenotypic characteristics associated with outcome, irrespective of the type of infection. Antimicrobial resistance is equally common in community-acquired as in hospital-acquired infection
    corecore